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Today’s Objectives

* Convex Optimization Algorithms

Disclaimer: Material used:

e Convex Optimization for Signal Processing and
Communications - From Fundamentals to Applications, C.Y.
Chi, W.C. Li, C.H. Lin

* Signal Processing and Networking for Big Data Applications,
Z Han, M Hong, D Wang, 2017

* Convex Optimization —S. Boyd and L. Vandenberghe
http://web.stanford.edu/~boyd/cvxbook/
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Standard form of optimization

min fo(x)

* Problem domain D = {ﬁ dom fz-} ﬂ {ﬁ dom hl}

e Feasible set

C= {x|xED, filx) <0, i=1,....m, hj(x) =0, i = 1.,....,p}

* A problem is feasible if there exists at leastonex € C;
infeasible if C = @

* The optimization problem is said to be a convex optimization
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Optimal solution

The optimal value p* of the optimization problem is defined as

p* = 1nf fo(x) = inf {fo(x) | x € C}.

A point x is IocaIIy optimal (or a local minimizer ) if there is an
r>0such fo(xz)=inf{fo(x) |x€C,|x—z|2 <7}

A feasible point x with fy(x) < p* + € (where € > 0)is called
e-suboptimal
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Optimality criterion

* Assume that f is differentiable, and that the associated
optimization problem with the constraint set C given by

min fo(x)
s.t. Ax=Db, f;(x)<0,i=1,...,m,

IS convex
* Then a point x € C is optimal if and only if

Vix)!(y —x)>0, Vy eC.
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Basic optimization method

flz)g

Basic case minimize f(z), z € R, f € 2. /

H“

Clearly z* occurs where the slope is zero, i.e. where

non-negative curvature is necessary at r*, i.e. it is required that the
second order condition

must hold at =* for a strong local minimum.
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A2

Higher dimensions

I 4

Contour representation of
f(x) = x¢ + 2x2

-
T

Contour of the 2D Rbsenbrock function
f() =100x, —x9)* + (1 —x1 )?
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Inequality constrained problems

min f(X)
such that g(x) < 0.

x*; flx*) =12

(constrammed minimum )

g(x) <0
(feasible region)

unconstrained ¥
minimum g(x) >0

(infeasible region)
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Unconstrained minimization

Direct search algorithms

* These algorithms require an initial estimate to the optimum
point, denoted by x°.
* With this estimate as starting point, the algorithm generates

a sequence of estimates x%, x!, X%, . . ., by successively
searching directly from each point in a direction of descent

u*! to determine the next point.

* The process is terminated if either no further progress is
made, or if a point x¥ is reached (for smooth functions) at
which the first necessary condition Vf(x*) = 0 is sufficiently

accurately satisfied
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Line search descent methods

df (x')
dA

= VT f(x")u*! <o.

uz-l-l

* Descend direction
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First order methods

* Line search descent methods use the gradient vector Vf(x)
to determine the search direction for each iteration

* The simplest and most famous of these methods is the
method of steepest descent, first proposed by Cauchy in
1847.

Given x', do for iteration i = 1,2, ... until convergence:
- -V f(xi!
1. set u* = f(-i—l )
|V f(x*=1)]]

2. set x! = x'~1 + \;u’ where ), is such that

F\) = f(x 1+ ud) = min f(x*1 4+ Au?) (line search).
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steepest descent

Orthogonal zigzagging behaviour of the steepest descent method
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Second order linear search descent methods

These methods are based on Newton’s method for solving Ff(x) =0
* Given x°

X =x"1-H ' (xH)YVfx), i=12,... (2.17)

Modified version
e Atiteration u' = A = —H_I(Xi_l)vf(xi_l)
e Then find m:\in f(xi_1 + Au’)

e Andset x! = x"1 + \u’
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lterative Descent Methods

X"t =x"+a,d", r=0,1,--

where, if Vf(x") # 0, the direction d” satisfies Vf(x")d” < 0,and a" is a
positive stepsize

@ General Case: Gradient descent methods
X'}“—l — X?‘ o ('IPD?V]((XJAJ r — {} J_ . ow

where D" is a positive definite matrix
@ Special case I: Steepest descent

X.]rw_l _ X.]h - “rvf(xr? - [] l o
@ Special case Il: Newton’s method

. . N | .
X" =x" —a, (V2f(x"))  Vf(x"), r=01,--
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Convergence criteria

In practice the algorithm is terminated if some convergence criterion
is satisfied. Usually termination is enforced at iteration i if one, or a
combination, of the following criteria is met:

(i) [x" = x| <e
(i) V(x| <e2
(i) [f(x") — f(x*"1)] < es.

where €1, €9 and £3 are prescribed small positive tolerances.
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Constrained convex optimization

minimize f(m)
subject to A

=,

0,

0.

@ Reminder: The problem is called convex problem if
@ /(z)is a convex function

Q L.

() Is an affine function, i.e., h;(z) = Az + b
@ g,(x) is a convex function
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Lagrange multipliers

The Lagrangian can be formed using the Lagrangian multipliers A; > 0
and ; € R

m

L(z. \v) = f(z)+ Z \ig;(x) + Z vihs ()
j=1 i=1

The Lagrangian dual function

L*(A\,v) :;g}f{L(l A, V) _l}g}f{f +Z/\3Jj +Z;th(;p)

The Dual Problem

Iax L*(A\,v), st A>0

A; and v;'s can be viewed as “prices” for violating the constraints
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Duality

Let /* be the optimal value of f(z)

The Lagrangian dual L* is
@ A concave function: even when the original problem is not convex

Q Alower bound: for A > 0, L*(\.v) < f*

Let d* be the optimal objective of the dual
Weak duality: ¢* < 1+

@ Always true
@ Non-trivial lower bound for hard problems

@ Useful in approximation algorithms
Strong duality: ¢* = [~

@ Does not hold in general

Q@ [f holds, sufficient to solve the dual
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KKT Condition

minimize f(x)
subject to  hi(z) =0, i=1,---.m
(2) <0, j

Any optimal and dual pairs z and (), 7) must satisfy

+Z\ Vg, —|—ZN Vhi(2) =0«

gj(x) < 0,%’3 =1,...,n, (pnmal feasibility)
hi(x)=0.Vi=1,....m, (primal feasibility)

\; >0.Yj=1....n, (dualfeasibility)
g;i(7) x \; =0,¥j (complementarity).
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Alternating Directions Method of Multipliers

The ADMM algorithm solves the following convex program

min f(x)+ g(z)
st. Ax+Bz=c
xe X, ze s

x € R" and z € R™ are the variables
f, g are two convex function, possible nonsmooth
A, B are two known matrices, c is a known vector

Note: Two blocks of variables; separable in the objective, coupled by a
linear equation

Main Benefit: Capable of dealing with x and z separately (in a BCD
manner)
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The ADMM Algorithm

Consider the Equality-Constrained convex problem

min f(x)+g(z). st.Ax+Bz=c

xcX,zc Z

Augmented Lagrangian

Lo(x,z;y) = f(x)+g(z)+ (y,Ax+ Bz — c) + ;—}HAX + Bz — ¢’
Method of multipliers

1 1 :
(xr+ A ) —argmin L,(x.z:y")
X,Z

vyl =vy" 4+ (AXTJFI + Bz — c)
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The ADMM Algorithm

The steps of the ADMM Algorithm is given below

x" 1 = argmin L (X,zr';y”‘)
xeX

z' " =argmin L,(x" . z;y")
ZEZ P

y?‘—l—l _ y?‘ + 0 (AX’P—I—I + BZT‘—I—I . C)

@ Divide and conquer: Optimize x and z once (coordinate descent on L),
then update the dual variable

@ The primal problem is no longer solved exactly (where the efficiency
comes from)
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Optimality of ADMM

@ Lagrangian
L(x.z:y) = f(x) + g(z) + (y, Ax + Bz —¢)

@ KKT condition (suppose X, Z are both the whole space, no other
constraints on x, z)

— Ay € of(x*). —-B'y" €9y(z")
Ax"+Bz"—c=0
@ ADMM updates (optimality condition at each iteration)
—ATy ™1 L AT (B2 — Bz') € 0f(x" )
_BTyr+1 c E:)Q(Zrﬂ)
@ Optimality is achieved if the following are satisfied:
AT (Bz'T!' - Bz') =0
Ax! T+ Bzt —c=0
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Convergence

@ The ADMM converges under very mild condition
@ Let us define the residue as

r = Ax" +Bz —c¢

@ Claim: Suppose that the problem is convex and feasible, then the
following is true

@ Residue convergence: r* — 0as k — oo
@ Obijective convergence: f(x") + g(z') —» p* as k — x

© Dual variable convergence: y* — y* as k — oo, where y* is the optimal
dual solution
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Matrix factorizations

LU: A square matrix A can be written A = LU where L is lower-
triangular and U is upper triangular. The main use is in the solution of
a system of equations

Ax=LUx=Db

Cholesky: A Hermitian positive-definite matrix A can be factored as
A = LLY where L is lower-triangular. It is used in simulations to
compute a vector noise of specified covariance.

QR: A general m x n matrix A can be factored as A = QR where

QQ"” =1 and R is upper-triangular. It is used in the solution of
least-squares problems.
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LU Decomposition

The LU decomposition can be applied to any m x m matrix A. The
algorithm is essentially Gaussian elimination. It should be implemented with
permutations to provide numerical stability. The result is three matrices, L,

U and P such that
PA = LU

The permutation matrix P is orthogonal: PTP =1.
A system of equations Ax = b can be solved in steps. First, let Ax =
PTLUx = PTLy = b where y = Ux. This leads to the system of

equations
Ly =Pb=c

The equations Ly = ¢ can be solved by forward substitution. Then x = Uy
can be solved by back substitution.

The Matlab call is [L,U,P]1=1u(A)

Read the Matlab documentation on the function ml1divide to see how the
various factorizations are used by the \ operator.
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LU example

In this example we will solve the system of equations Ax = b given by

1 2 4| |z, 13
3 2 1| |xzo| = |18
6 3 5| |3 48
First, factor A using [L,U,P]=A.
[ 1 0O 0|16 3 5 6 3 5
LU= (1/6 1 0[]0 3/2 19/6 | =1 2 4
_1/2 /3 1] (0 0 —23/9 3 2 1
0 0 11 [1 2 4 6 3 5
PA=1|1 0 0] 1|3 2 1|=1|1 2 4
0 1 0) 16 3 5 3 2 1
48
LUx =PAx=Pb= |13
18
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LU example (cont)

Let y = Ux, and first solve for y. We can then solve for x.

1 0 O | 48
Ly=|(1/6 1 0] [y2] = |13
1/2 1/3 1| |ys 18

ys = 18 — 48/2 — 5/3 = —23/3. Then

=

y1 = 48, yo = 13 — 48/6 = 5,

Ux =y yields
6 3 5) I 48
0 3/2 19/6 ro| = 5
0 0 —=23/9| [xs3 —23/3

23=3 1o=(5—3-19/6)-2/3 = —3, 21 = (48 — 3(=3) — 5(3))/6 = 7

Once the LU factorization is obtained, the solution involves a forward
substitution followed by a backward substitution.
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Cholesky Factorization

When A is Hermitian and positive definite it can be decomposed as
A =LLY (1)

This is a special case of LU factorization.

The Cholesky factorization is unique when the diagonal entries of L are
required to be positive.

The Cholesky decomposition is mainly used for the numerical solution of
linear equations Ax = b. Writing Ax = b as

Ly=b and Lix=y

allows solving a triangular form first for y and then for x.

Correlated Random Numbers If R is a symmetric covariance matrix
then it has a Cholesky factorization R = LL”. Let y = Lx where
X are uncorrelated unit variance random numbers. Then E[yy!] =

LE(xxT)LT =LL” = R.

. CS-570 Statistical Signal Processing
S S ter 2019 H
pring >emester University of Crete, Computer Science Department FDRT

stitute of Computer Sci




Eigenvector and Eigenvalue

* An eigenvector x of a linear transformation A is a non-zero
vector that, when A is applied to it, does not change
direction.

* Applying A to the eigenvector only scales the eigenvector by
the scalar value A, called an eigenvalue.
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Eigenvector and Eigenvalue

* We want to find all the eigenvalues of A:

* Which can we writtenas: Ay — )\ij

x # 0.

e Therefore: Az = ()J)il’: i 7é 0.

(Al —A)x =0, x#0.
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Eigenvector and Eigenvalue

* We can solve for eigenvalues by solving: (Al — A)x =0, z # 0.

* Since we are looking for non-zero x, we can instead solve the
above equation as:

(M — A)| = 0.
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Properties

* The trace of a A is equal to the sum of its eigenvalues:

trA = i /\z
i=1

* The determinant of A is equal to the product of its
eigenvalues .
Al =]
=1

* The rank of A is equal to the number of non-zero eigenvalues
of A.

* The eigenvalues of a diagonal matrix D = diag(d,, ... d,) are
just the diagonal entriesd,, ... d,
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Spectral theory

* We call an eigenvalue A and an associated eigenvector an
eigenpair.

* The space of vectors where (A - Al) = 0 is often called the
eigenspace of A associated with the eigenvalue A.

* The set of all eigenvalues of A is called its spectrum:

d(A) ={A € C: A\l — Ais singular}
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Spectral theory

* The magnitude of the largest eigenvalue (in
magnitude) is called the spectral radius

p(A) = max {|A1],..., ||}

Where Cis the space of all eigenvalues of A
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Spectral theory

* The spectral radius is bounded by infinity norm of a matrix:
* Proof: Let A and v be an eigenpair of A:

p(4) = lim || A*||*/%
k— o0

AF (v = [ Xov]| = || ARV < (|4 - v
and since v # 0 we have
A® <[4

and therefore

1
p(A) < || A%
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Diagonalization

* An n x n matrix A is diagonalizable if it has n linearly
independent eigenvectors.

* Most square matrices (in a sense that can be made
mathematically rigorous) are diagonalizable:
* Normal matrices are diagonalizable
* Matrices with n distinct eigenvalues are diagonalizable

Lemma: Eigenvectors associated with distinct eigenvalues are
linearly independent.
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Diagonalization

AV =V D
A=VDV™

* Eigenvalue equation:

* Where D is a diagonal matrix of the eigenvalues

A1

An
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Diagonalization

AV =VD
A=VDV~!

* Eigenvalue equation:

* Assuming all A.'s are unique:

* Remember that the inverse of an orthogonal matrix is just its transpose and the eigenvectors

are orthogonal
A=VDV?!
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Symmetric matrices

*Properties:

* For a symmetric matrix A, all the eigenvalues are real.

* The eigenvectors of A are orthonormal.

A=VDV?
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Some applications of Eigenvalues

* PageRank
* Schrodinger’s equation
* PCA
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